`R/plot_4d_scatterbar.R`

`plot_4d_scatterbar.Rd`

There are 4 related functions for 2-way ANOVA type plots. In addition to a categorical variable along the X-axis, a grouping factor is passed to either `points`

, `bars`

or `boxes`

argument in these functions. A blocking factor (or any other categorical variable) can be optionally passed to the `shapes`

argument.

`plot_4d_point_sd`

(mean & SD, SEM or CI95 error bars)`plot_4d_scatterbar`

(bar & SD, SEM or CI95 error bars)`plot_4d_scatterbox`

(box & whiskers)`plot_4d_scatterviolin`

(box & whiskers, violin)

```
plot_4d_scatterbar(
data,
xcol,
ycol,
bars,
shapes,
facet,
ErrorType = "SD",
symsize = 3,
s_alpha = 0.8,
b_alpha = 1,
bwid = 0.7,
jitter = 0.1,
ewid = 0.2,
TextXAngle = 0,
LogYTrans,
LogYBreaks = waiver(),
LogYLabels = waiver(),
LogYLimits = NULL,
facet_scales = "fixed",
fontsize = 20,
group_wid = 0.8,
symthick,
bthick,
ColPal = c("okabe_ito", "all_grafify", "bright", "contrast", "dark", "fishy", "kelly",
"light", "muted", "pale", "r4", "safe", "vibrant"),
ColRev = FALSE,
ColSeq = TRUE,
...
)
```

- data
a data table, e.g. data.frame or tibble.

- xcol
name of the column with the categorical factor to plot on X axis. If column is numeric, enter as

`factor(col)`

.- ycol
name of the column to plot on quantitative variable on the Y axis.

- bars
name of the column containing grouping within the factor plotted on X axis. Can be categorical or numeric X. If your table has numeric X and you want to plot as factor, enter

`xcol = factor(name of colum)`

.- shapes
name of the column that contains matched observations (e.g. subject IDs, experiment number) or another variable to pass on to symbol shapes. If not provided, the shapes for all groups is the same.

- facet
add another variable from the data table to create faceted graphs using

`ggplot2`

facet_wrap.- ErrorType
select the type of error bars to display. Default is "SD" (standard deviation). Other options are "SEM" (standard error of the mean) and "CI95" (95% confidence interval based on t distributions).

- symsize
size of symbols, default set to 3.

- s_alpha
fractional opacity of symbols, default set to 0.8 (i.e. 80% opacity). Set

`s_alpha = 0`

to not show scatter plot.- b_alpha
fractional opacity of boxes. Default is set to 0, which results in white boxes inside violins. Change to any value >0 up to 1 for different levels of transparency.

- bwid
width of boxes; default 0.7.

- jitter
extent of jitter (scatter) of symbols, default is 0.1. Increase to reduce symbol overlap, set to 0 for aligned symbols.

- ewid
width of error bars, default set to 0.2.

- TextXAngle
orientation of text on X-axis; default 0 degrees. Change to 45 or 90 to remove overlapping text.

- LogYTrans
transform Y axis into "log10" or "log2"

- LogYBreaks
argument for

`ggplot2[scale_y_continuous]`

for Y axis breaks on log scales, default is`waiver()`

, or provide a vector of desired breaks.- LogYLabels
argument for

`ggplot2[scale_y_continuous]`

for Y axis labels on log scales, default is`waiver()`

, or provide a vector of desired labels.- LogYLimits
a vector of length two specifying the range (minimum and maximum) of the Y axis.

- facet_scales
whether or not to fix scales on X & Y axes for all facet facet graphs. Can be

`fixed`

(default),`free`

,`free_y`

or`free_x`

(for Y and X axis one at a time, respectively).- fontsize
parameter of

`base_size`

of fonts in`theme_classic`

, default set to size 20.- group_wid
space between the factors along X-axis, i.e., dodge width. Default

`group_wid = 0.8`

(range 0-1), which can be set to 0 if you'd like the two plotted as`position = position_identity()`

.- symthick
size (in 'pt' units) of outline of symbol lines (

`stroke`

), default =`fontsize`

/22.- bthick
thickness (in 'pt' units) of bar and error bar lines; default =

`fontsize`

/22.- ColPal
grafify colour palette to apply, default "okabe_ito"; see

`graf_palettes`

for available palettes.- ColRev
whether to reverse order of colour within the selected palette, default F (FALSE); can be set to T (TRUE).

- ColSeq
logical TRUE or FALSE. Default TRUE for sequential colours from chosen palette. Set to FALSE for distant colours, which will be applied using

`scale_fill_grafify2`

.- ...
any additional arguments to pass to

`ggplot2`

stat_summary or`ggplot2`

geom_point.

This function returns a `ggplot2`

object of class "gg" and "ggplot".

These can be especially useful when the fourth variable `shapes`

is a random factor or blocking factor (up to 25 levels are allowed; there will be an error with more levels). The `shapes`

argument can be left blank to plot ordinary 2-way ANOVAs without blocking.

In `plot_4d_point_sd`

and `plot_4d_scatterbar`

, the default error bar is SD (can be changed to SEM or CI95). In `plot_4d_point_sd`

, a large coloured symbol is plotted at the mean, all other data are shown as smaller symbols. Boxplot uses `geom_boxplot`

to depict median (thicker line), box (interquartile range (IQR)) and the whiskers (1.5*IQR).

Colours can be changed using `ColPal`

, `ColRev`

or `ColSeq`

arguments.
`ColPal`

can be one of the following: "okabe_ito", "dark", "light", "bright", "pale", "vibrant, "muted" or "contrast".
`ColRev`

(logical TRUE/FALSE) decides whether colours are chosen from first-to-last or last-to-first from within the chosen palette.
`ColSeq`

(logical TRUE/FALSE) decides whether colours are picked by respecting the order in the palette or the most distant ones using `colorRampPalette`

.

The resulting `ggplot2`

graph can take additional geometries or other layers.

```
#4d version for 2-way data with blocking
plot_4d_scatterbar(data = data_2w_Tdeath,
xcol = Genotype,
ycol = PI,
bars = Time,
shapes = Experiment)
#4d version without blocking factor
#`shapes` can be left blank
plot_4d_scatterbar(data = data_2w_Tdeath,
xcol = Genotype,
ycol = PI,
bars = Time)
```